RAS BiologyИзвестия Российской академии наук. Серия биологическая Biology Bulletin

  • ISSN (Print) 1026-3470
  • ISSN (Online) 3034-5367

A new approach to estimating speed of microorganisms uniform movement along a helical trajectory

PII
S30345367S1026347025040128-1
DOI
10.7868/S3034536725040128
Publication type
Status
Published
Authors
Volume/ Edition
Volume / Issue number 4
Pages
489-494
Abstract
Analysis of the motion of microscopic organisms is important for understanding their behavior, intrinsic state, and response to external conditions. Many free-swimming microorganisms move in threedimensional space along a helical trajectory. When a three-dimensional trajectory is analyzed from video frames, it is transformed into a flat curve. This leads to loss of some of the motion data and, in particular, to errors in the estimates of the traveled path and true speed. We propose to estimate the length of a three-dimensional spiral path using the maximum length of the projection of the trajectory segment. The analysis showed that for rectilinear spiral trajectories, along which organisms move uniformly, this method in many cases allows us to correctly estimate the traveled path and true speed of movement, and to perform a correct comparison of the speeds of different microorganisms.
Keywords
траектория движение по спирали скорость движения проекция пути динофлагелляты Oxyrrhis marina
Date of publication
04.02.2025
Year of publication
2025
Number of purchasers
0
Views
53

References

  1. 1. Aragaki H., Ogoh K., Kondo Y., Aoki K. LIM Tracker: a software package for cell tracking and analysis with advanced interactivity // Sci. Rep. 2022. V. 12. 2702. https://doi.org/10.1038/s41598-022-06269-6
  2. 2. Boakes D. E., Codling E. A., Thorn G. J., Steinke M. Analysis and modelling of swimming behaviour in Oxyrrhis marina // J. Plank. Res. 2011. V. 33. № 4. P. 641-649. https://doi.org/10.1093/plankt/fbq136
  3. 3. Crenshaw H. C. A new look at locomotion in microorganisms: Rotating and translating // American Zoologist. 1996. V. 36. № 6. P. 608-618. https://doi.org/10.1093/icb/36.6.608
  4. 4. Croze O. A., Martinez V. A., Jakuszeit T., Dell’Arciprete D., Poon W. C.K., Bees M. A. Helical and oscillatory microswimmer motility statistics from differential dynamic microscopy // New J. Phys. 2019. V. 21. 063012. https://doi.org/10.1088/1367-2630/ab241f
  5. 5. Durante G., Roselli L., De Nunzio G., Piemomtese U., Marsella G., Basset A. Plankton Tracker: A novel integrated system to investigate the dynamic sinking behavior in phytoplankton // Ecological Informatic. 2020. V. 60. 101166. https://doi.org/10.1016/j.ecoinf.2020.101166
  6. 6. Drescher K, Leptos K. C., Goldstein R. E. How to track protists in three dimensions // Rev. Sci. Instrum. 2009. V. 80. 014301. https://doi.org/10.1063/1.3053242
  7. 7. Emami N., Sedaei Z., Ferdousi R.Computerized cell tracking: Current methods, tools and challenges // Visual Informatics. 2021. V. 5. № 1. P. 1-13. https://doi.org/10.1016/j.visinf.2020.11.003
  8. 8. Ershov D., Phan M.-S., Pylvanainen J. W., Rigaud S. U., Le Blanc L., Charles-Orszag A., Conway J. R.W., Laine R. F., Roy N. H., Bonazzi D., Dumenil G., Jacquemet G., Tinevez J.-Y. TrackMate 7: integrating state-of-the-art segmentation algorithms into tracking pipelines // Nat. Methods. 2002. V. 19. P. 829-832. https://doi.org/10.1038/s41592-022-01507-1
  9. 9. Fenchel T. How dinoflagellates swim // Protist. 2001. V. 152. № 4. P. 329-338. https://doi.org/10.1078/1434-4610-00071
  10. 10. Gurarie E., Grunbawm D., Nishizaki M. T. Estimating 3D movements from 2D observations using a continuous model of helical swimming // Bull. Math. Biol. 2011. V. 73. P. 1358-1377. https://doi.org/10.1007/s11538-010-9575-7
  11. 11. Rauen T. V., Mukhanov V. S., Baiandina I. S., Lyakh A. M. Influence of microplastics on the nutritional and locomotive activity of dinoflagellate Oxyrrhis marina under experimental conditions // Inland Water Biology. 2024. V. 17. № 2. P. 316-326. https://doi.org/10.1134/S1995082924020135
  12. 12. Roberts E. C., Wootton E. C., Davidson K., Jeong H. J., Lowe C. D., Montagnes D. J.C. Feeding in the dinoflagellate Oxyrrhis marina: linking behaviour with mechanisms // J. Plankt. Res. 2011. V. 33. № 4. P. 603-614. https://doi.org/10.1093/PLANKT%2FFBQ118
  13. 13. Vestergaard C. L., Pedersen J. N., Mortensen K. I., Flyvbjerg H. Estimation of motility parameters from trajectory data // Eur. Phys. J. Spec. Top. 2015. V. 224. P. 1151-1168. https://doi.org/10.1140/epjst/e2015-02452-5
  14. 14. Yang Y., Qingxuan L, Yuezun L., Zhiqiang W., Junyu D. PhyTracker: an online tracker for phytoplankton // arXiv. 2024. arXiv:2407.00352.
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library