RAS BiologyИзвестия Российской академии наук. Серия биологическая Biology Bulletin

  • ISSN (Print) 1026-3470
  • ISSN (Online) 3034-5367

A comparative analysis of complete mitochondrial genomes of two tyulka Clupeonella kessler, 1877 (Actinopterygii: Clupeidae) species allowed to clarify their evolutionary history in the Ponto-Caspian region

PII
S1026347025020032-1
DOI
10.31857/S1026347025020032
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 2
Pages
150-159
Abstract
This paper presents a comparative analysis of mitochondrial genome of the anchovy sprat Clupeonella engrauliformis and the Black and Caspian Sea sprat C. cultriventris from the Caspian Sea. The mitogenome of tulka has a length of about 16.6 thousand bp and is characterized by a gene order conservative for herring fishes. The difference between the mitochondrial genomes of anchovy and Black and Caspian Sea sprats from concerns 449 bp (2.7%), including two insertions in the control region, unknown in other representatives of the genus Clupeonella. The differentiation of tulkas is probably related to transgression and degradation of the Pontic Lake-Sea: it began in the Miocene, continued in the Pliocene, and was completed by the Pleistocene. The modern differences of tulkas may be connected with different adaptations of their ancestors to specific conditions in different water bodies – remnants of the Pontic “Mega-lake”.
Keywords
геномика митохондриальный геном рыбы тюлька килька Clupeonella engrauliformis Clupeonella cultriventris Каспийское море
Date of publication
04.11.2025
Year of publication
2025
Number of purchasers
0
Views
71

References

  1. 1. Казанчеев Е.Н. Рыбы Каспийского моря. Москва: Легкая и пищевая промышленность, 1981. 168 с.
  2. 2. Картавцев Ю.Ф. Генетическая дивергенция видов и других таксонов. Географическое видообразование и генетическая парадигма неодарвинизма в действии // Успехи современной биологии. 2013. Т. 133. № 5. С. 419–451.
  3. 3. Помогаева Т.В., Татарников В.А. Особенности пространственного распределения каспийских килек в средней части Каспийского моря в летний период по результатам гидроакустических исследований // Труды ВНИРО. 2021. T. 184. C. 87–98. https://doi.org/10.36038/2307-3497-2021-184-87-98
  4. 4. Приходько Б.И. 1979. Экологические черты каспийских килек (род Clupeonella) // Вопросы ихтиологии. Т. 19. № 5. С. 801–812.
  5. 5. Разинков В.П., Парицкий Ю.А., Грозеску Ю.Н. Биология и современное состояние запаса анчоусовидной кильки (Clupeonella engrauliformis Borodin) // Вестник Астраханского государственного технического университета. Серия: Рыбное хозяйство. 2020. Т. 2020. № 2. С. 45–51. https://doi.org/10.24143/2073-5529-2020-2-45-51
  6. 6. Световидов А.Н. Сельдевые (Clupeidae). Фауна СССР. Рыбы. Том 2. Выпуск 1. Москва, Ленинград: Издательство АН СССР, 1952. 333 с.
  7. 7. Artamonova V.S., Makhrov A.A., Karabanov D.P., Rolskiy A. Yu., Bakay Yu.I., Popov V.I. Hybridization of beaked redfish (Sebastes mentella) with small redfish (Sebastes viviparus) and diversification of redfish (Actinopterygii: Scorpaeniformes) in the Irminger Sea // Journal of natural history. 2013. V. 47. № 25-28. P. 1791–1801. https://doi.org/10.1080/00222933.2012.752539
  8. 8. Barido-Sottani J., Boskova V., Plessis L., Kuhnert D., Magnus C., Mitov V., Muller N.F., Pecerska J., Rasmussen D.A., Zhang C. Taming the BEAST – a community teaching material resource for BEAST2 // Systematic Biology. 2018. V. 67. № 1. 170–174. https://doi.org/10.1093/sysbio/syx060
  9. 9. Bouckaert R., Vaughan T.G., Barido-Sottani J., Duchene S., Fourment M., Gavryushkina A., Heled J., Jones G., Kuhnert D., De Maio N. BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis // PLoS computational biology. 2019. V. 15. № 4. P. e1006650. https://doi.org/10.1371/journal.pcbi.1006650
  10. 10. Canales-Aguirre C.B., Ritchie P.A., Hernandez S., Herrera-Yanez V., Ferrada Fuentes S., Oyarzun F.X., Hernandez C.E., Galleguillos R., Arratia G. Phylogenetic relationships, origin and historical biogeography of the genus Sprattus (Clupeiformes: Clupeidae) // Peer J. 2021. V. 9. P. e11737. https://doi.org/10.7717/peerj.11737
  11. 11. Chan P.P., Lin B.Y., Mak A.J., Lowe T.M. tRNAscan-SE2.0: improved detection and functional classification of transfer RNA genes // Nucleic acids research. 2021. V. 49. № 16. P. 9077–9096.
  12. 12. Daskalov G.M., Mamedov E.V. Integrated fisheries assessment and possible causes for the collapse of anchovy kilka in the Caspian Sea // ICES Journal of Marine Science. 2007. V. 64. № 3. P. 503–511. https://doi.org/10.1093/icesjms/fsl047
  13. 13. Dierckxsens N., Mardulyn P., Smits G. NOVOPlasty: De novo assembly of organelle genomes from whole genome data // Nucleic acids research. 2016. V. 45. № 4. P. e18. doi: 10.1093/nar/gkw955
  14. 14. Duchene S., Archer F.I., Vilstrup J., Caballero S., Morin P.A. Mitogenome phylogenetics: the impact of using single regions and partitioning schemes on topology, substitution rate and divergence time estimation // PLoS ONE. 2011. V. 6. № 11. P. e27138. https://doi.org/10.1371/journal.pone.0027138
  15. 15. Esin N.V., Yanko-Hombach V.V., Esin N.I. Evolutionary mechanisms of the Paratethys Sea and its separation into the Black Sea and Caspian Sea // Quaternary International. 2018. V. 465. P. 46–53. https://doi.org/10.1016/j.quaint.2016.06.019
  16. 16. FAO yearbook. Fishery and Aquaculture Statistics 2020. Rome, Italy: Food and Agriculture Organization of the United Nations, 2023. 193 p. https://doi.org/10.4060/cc7493en
  17. 17. Formenti G., Rhie A., Balacco J., Haase B., Mountcastle J., Fedrigo O., Brown S., Capodiferro M.R., Al-Ajli F.O., Ambrosini R. Complete vertebrate mitogenomes reveal widespread repeats and gene duplications // Genome Biology. 2021. V. 22. P. e120. https://doi.org/10.1186/s13059-021-02336-9
  18. 18. Froese R., Pauly D. (Eds.) FishBase. 2024. World Wide Web electronic publication: version 02/2024. www.fishbase.org (accessed 10 April 2024).
  19. 19. Karabanov D.P., Kodukhova Y.V. Biochemical polymorphism and intraspecific structure in populations of Kilka Clupeonella cultriventris (Nordmann, 1840) from natural and invasive parts of its range // Inland Water Biology. 2018. V. 11. № 4. P. 496–500. https://doi.org/10.1134/S1995082918040107
  20. 20. Karabanov D.P., Bekker E.I., Pavlov D.D., Borovikova E.A., Kodukhova Y.V., Kotov A.A. New sets of primers for DNA identification of non-indigenous fish species in the Volga-Kama basin (European Russia) // Water. 2022. V. 14. № 3. P. e437. https://doi.org/10.3390/w14030437
  21. 21. Karabanov D.P., Kotov A.A., Borovikova E.A., Kodukhova Y.V., Zhang X. Comparison of the efficiency of single-locus species delimitation methods: a case study of a single lake fish population in comparison against the barcodes from international databases // Water. 2023a. V. 15. № 10. P. e1851. https://doi.org/10.3390/w15101851
  22. 22. Karabanov D.P., Pavlov D.D., Dgebuadze Y.Y, Bazarov MI, Borovikova EA, Gerasimov Y.V., Kodukhova Y.V., Mikheev P.B., Nikitin E.V, Opaleva T.L. A dataset of non-indigenous and native fish of the Volga and Kama Rivers (European Russia) // Data. 2023b. V. 8. № 10. P. e154. https://doi.org/10.3390/data8100154
  23. 23. Kaymaram F., Salarpouri A., Di Dario F. Clupeonella engrauliformis. The IUCN Red List of Threatened Species. 2018. The International Union for Conservation of Nature. https://dx.doi.org/10.2305/IUCN.UK.2018-2.RLTS.T98471289A143838562.en
  24. 24. Kerpedjiev P., Hammer S., Hofacker I.L. Forna (force-directed RNA): Simple and effective online RNA secondary structure diagrams // Bioinformatics. 2015. V. 31. № 20. P. 3377–3379. https://doi.org/10.1093/bioinformatics/btv372
  25. 25. Lavoue S., Miya M., Saitoh K., Ishiguro N.B., Nishida M. Phylogenetic relationships among anchovies, sardines, herrings and their relatives (Clupeiformes), inferred from whole mitogenome sequences // Molecular phylogenetics and evolution. 2007. V. 43. № 3. P. 1096–1105. https://doi.org/10.1016/j.ympev.2006.09.018
  26. 26. Lavoue S., Miya M., Musikasinthorn P., Chen W.-J., Nishida M. Mitogenomic evidence for an Indo-West Pacific origin of the Clupeoidei (Teleostei: Clupeiformes) // PLoS ONE. 2013. V. 8. № 2. P. e56485. https://doi.org/10.1371/journal.pone.0056485
  27. 27. Meng G., Li Y., Yang C., Liu S. MitoZ: a toolkit for animal mitochondrial genome assembly, annotation and visualization // Nucleic acids research. 2019. V. 47. №11. P. e63. https://doi.org/10.1093/nar/gkz173
  28. 28. Nelson J.S., Grande T., Wilson M.V.H. Fishes of the World, fifth edition. Hoboken, New Jersey: John Wiley & Sons, 2016. 707 p. https://doi.org/10.1002/9781119174844
  29. 29. Palcu D.V., Patina I.S., Sandric I., Lazarev S., Vasiliev I., Stoica M., Krijgsman W. Late Miocene megalake regressions in Eurasia // Scientific Reports. 2021. V. 11. № 1. P. e11471. https://doi.org/10.1038/s41598-021-91001-z
  30. 30. Phillips J.D., Gillis D.J., Hanner R.H. Lack of statistical rigor in DNA barcoding likely invalidates the presence of a true species’ barcode gap // Frontiers in Ecology and Evolution. 2022. V. 10. P. e859099. https://doi.org/10.3389/fevo.2022.859099
  31. 31. Popov S.V., Rogl F., Rozanov A.Y., Shcherba I.G., Steininger F.F. Lithological-Paleogeographic maps of Paratethys: 10 maps Late Eocene to Pliocene. Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung, 2004. 46 p.
  32. 32. Popov S.V., Shcherba I.G., Ilyina L.B., Nevesskaya L.A., Paramonova N.P., Khondkarian S.O., Magyar I. Late Miocene to Pliocene palaeogeography of the Paratethys and its relation to the Mediterranean // Palaeogeography, Palaeoclimatology, Palaeoecology. 2006. V. 238. № 1-4. P. 91–106. https://doi.org/10.1016/j.palaeo.2006.03.020
  33. 33. Satoh T.P., Miya M., Mabuchi K., Nishida M. Structure and variation of the mitochondrial genome of fishes // BMC Genomics. 2016. V. 17. № 1. P. e719. https://doi.org/10.1186/s12864-016-3054-y
  34. 34. UNEP, 2011. Caspian Sea: State of the environment report 2010. Report by the interim Secretariat of the Framework Convention for the Protection of the Marine Environment of the Caspian Sea and the Project Coordination Management Unit of the “CaspEco” project. GRID-Arendal: United Nations Environment Programme, 2010. 109 p.
  35. 35. Wang Q., Dizaj L.P., Huang J., Sarker K.K., Kevrekidis C., Reichenbacher B., Esmaeili H.R., Straube N., Moritz T., Li C. Molecular phylogenetics of the Clupeiformes based on exon-capture data and a new classification of the order // Molecular phylogenetics and evolution. 2022. V. 175. P. e107590. https://doi.org/10.1016/j.ympev.2022.107590
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library