RAS BiologyИзвестия Российской академии наук. Серия биологическая Biology Bulletin

  • ISSN (Print) 1026-3470
  • ISSN (Online) 3034-5367

Scutellaria lateriflora root’s phenolic segment of metabolome

PII
S1026347025010033-1
DOI
10.31857/S1026347025010033
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume / Issue number 1
Pages
24-34
Abstract
The article presents the results of studying the metabolites of roots and hairy roots of S. lateriflora using liquid chromatography–mass spectrometry. It has been established that the main share of polyphenolic metabolites in roots and hairy roots is phenylethanoids and flavonoids containing up to two and up to four methoxyl groups, respectively. Among flavonoids, wogonin, 6-OMe wogonin and their glycosides are most abundant in the roots of the plant. Phenylethanoids are represented by a series of caffeoyl rutinosides, hydroxytyrosol, with a content parity with flavonoids. In addition to polyphenols, a significant content of sucrose was found in the root system.
Keywords
Scutellaria lateriflora корни корневые волоски углеводы флавоноиды метилирование гликозилирование ЖХ-МС/МС
Date of publication
04.11.2025
Year of publication
2025
Number of purchasers
0
Views
74

References

  1. 1. Bolton J. L., Dunlap T. L., Dietz B. M. Formation and biological targets of botanical o-quinones // Food Chem. Tox. 2018. V. 120. P. 700–707. https://doi.org/10.1016/j.fct.2018.07.050
  2. 2. Chen S. Genetic and phylogenetic analysis of the complete genome for the herbal medicine plant of Scutellaria baicalensis from China // Mit. DNA B. 2019. V. 4. P. 1683–1685. https://doi.org/10.1080/23802359.2019.1605859
  3. 3. Costine B., Zhang M. Z., Chhajed S., Pearson B., Chen S. X., Nadakuduti S. S. Exploring native Scutellaria species provides insight into differential accumulation of flavones with medicinal properties // Sci. Rep. 2022. V. 12. P. 13201. https://doi.org/10.1038/s41598-022-17586-367-1.
  4. 4. Cui M. Y., Lu A. R., Li J. X., Liu J., Fang Y. M., Pei T. L., Zhong X., Wei Y. K., Kong Y., Qiu W. Q., Hu Y. H., Yang J., Chen X. Y., Martin C., Zhao Q. Two types of O-methyltransferases are involved in biosynthesis of anticancer methoxylated 4`-deoxyflavones in Scutellaria baicalensis Georgi // Plant Biotech. J. 2021. V. 20. P. 1–14. https://doi.org/10.1111/pbi.13700
  5. 5. Elkin Y. N., Kulesh N. I., Shishmarev V. M., Kargin V. M., Manyakhin A. Y. Scutellaria baicalensis: the end of the flavone biosynthesis pathway // Acta Biol. Crac. bot. 2022. V. 64. P. 39–43. https://doi.org/10.24425/abcsb.2021.136704
  6. 6. Elkin Y. N., Kulesh N. I., Stepanova A. Y., Solovieva A. I., Kargin V. M., Manyakhin A. Y. Methylated flavones of the hairy root culture Scutellaria baicalensis // J. Plant Phys. 2018. V. 231. P. 277–280. https://doi.org/10.1016/j.jplph.2018.10.009
  7. 7. Elkin Y. N., Stepanova A. Y., Pshenichnyuk S. A., Manyakhin A. Y. Root specific methylated flavones protect of Scutellaria baicalensis // Khim. Rast. Syr’ja. 2023. № 4. P. 241–248. https://doi.org/10.14258/jcprm.20230411877
  8. 8. Islam M. N., Downey F., Ng C. K. Y. Comparative analysis of bioactive phytochemicals from Scutellaria baicalensis, Scutellaria lateriflora, Scutellaria racemosa, Scutellaria tomentosa and Scutellaria wrightii by LC-DAD-MS // Metabolomics. 2011. V. 7. P. 446–453. https://doi.org/10.1007/s11306-010-0269-9
  9. 9. Kim J. K., Kim Y. S., Kim Y., Uddin M. R., Kim Y. B., Kim H. H., Park S. U. Comparative analysis of flavonoids and polar metabolites from hairy roots of Scutellaria baicalensis and Scutellaria lateriflora // World J. Microbio. Biotech. 2014. V. 30. P. 887–892. https://doi.org/10.1007/s11274-013-1498-7
  10. 10. Li J., Wang Y. H., Smillie T. J., Khan I. A. Identification of phenolic compounds from Scutellaria lateriflora by liquid chromatography with ultraviolet photodiode array and electrospray ionization tandem mass spectrometry // J. Biomed. Anal. 2012. V. 63. P. 120–127. https://doi.org/10.1016/j.jpba.2012.01.027
  11. 11. Li L., Kitazawa H., Zhang X., Zhang L., Sun Y., Wang X., Liu Y., Guo S., Yu S. Melatonin retards senescence via regulation of the electron leakage of postharvest white mushroom (Agaricus bisporus) // Food Chem. 2021. V. 340. P. 127833. https://doi.org/10.1016/j.foodchem.2020.127833
  12. 12. Modelli A., Pshenichnyuk S. A. Gas-phase dissociative electron attachment to flavonoids and possible similarities to their metabolic pathways // Phys. Chem. Chem. Phys. 2013. V. 15. P. 1588–1600. https://doi.org/10.1039/C2CP43379F
  13. 13. Pei T., Yan M., Huang Y., Wei Y., Martin C., Zhao Q. Specific flavonoids and their biosynthetic pathway in Scutellaria baicalensis // Front. Plant Sci. 2022. V. 13. P. 866282. https://doi.org/10.3389/fpls.2022.866282
  14. 14. Pshenichnyuk S. A., Elkin Y. N., Kulesh N. I., Lazneva E. F., Komolov A. S. Low–energy electron interaction with retusin extracted from Maackia amurensis: towards a molecular mechanism of the biological activity of flavonoids // Phys. Chem. Chem. Phys. 2015. V. 17. P. 16805–16812. https://doi.org/10.1039/C5CP02890F
  15. 15. Qiao X., Li R., Song W., Miao W. J., Liu J., Chen H. B., Guo D. A., Ye M. A targeted strategy to analyze untargeted mass spectral data: Rapid chemical profiling of Scutellaria baicalensis using ultra-high performance liquid chromatography coupled with hybrid quadrupole orbitrap mass spectrometry and key ion filtering // J. Chrom. A. 2016. V. 1441. P. 83–95. https://doi.org/10.1016/j.chroma.2016.02.079
  16. 16. Sherman S. H., Nirmal J. Current status of research on medicinal plant Scutellaria lateriflora: A review // J. Med. Act. Plants. 2022. V. 11. P. 22–38. https://doi.org/10.7275/shxv-wb39
  17. 17. Stepanova A. Y., Solov’eva A. I., Malunova M. V., Salamaikina S. A., Panov Y. M., Lelishentsev A. A. Hairy roots Scutellaria spp. (Lamiaceae) as promising producers of antiviral flavones // Molecules. 2021. V. 26. P. 3927. https://doi.org/10.3390/molecules26133927
  18. 18. Takagi S., Yamaki M., Inoue K. Studies on the water-soluble constituents of the roots of Scutellaria baicalensis Georgi (Wogon) // Yakugaku Zasshi. 1980. V. 100. Iss. 12. P. 1220–1224. https://doi.org/10.1248/yakushi1947.100.12_1220
  19. 19. Tsai P. J., Huang W. C., Hsieh M. C., Sung P. J., Kuo Y. H., Wu W. H. Flavones isolated from Scutellariae radix suppress propionibacterium acnes-induced cytokine production in vitro and in vivo // Molecules. 2016. V. 21. P. 15. https://doi.org/10.3390/molecules21010015
  20. 20. Wang Z. L., Wang S., Kuang Y., Hu Z. M., Qiao X., Ye M. A comprehensive review on phytochemistry, pharmacology, and flavonoid biosynthesis of Scutellaria baicalensis // Pharm. Biol. 2018. V. 56. P. 465–484. https://doi.org/10.1080/13880209.2018.1492620
  21. 21. Wilczańska-Barska A., Królicka A., Głód D., Majdan M., Kawiak A., Krauze-Baranowska M. Enhanced accumulation of secondary metabolites in hairy root cultures of Scutellaria lateriflora following elicitation // Biotech. Lett. 2012. V. 34. P. 1757–1763. https://doi.org/10.1007/s10529-012-0963-y
  22. 22. Xia H., Attygalle A. B. Effect of electrospray ionization source conditions on the tautomer distribution of deprotonated p-hydroxybenzoic acid in the gas phase // Anal. Chem. 2016.V. 88. P. 6035–6043. https://doi.org/10.1021/acs.analchem.6b01230
  23. 23. Zhao Q., Cui M. Y., Levsh O., Yang D., Liu J., Li J., Hill L., Yang L., Hu Y., Weng J. K., Chen X. Y., Martin C. Two CYP82D enzymes function as flavone hydroxylases in the biosynthesis of root-specific 4’-deoxyflavones in Scutellaria baicalensis // Mol. Plant. 2018. V. 11. P. 135–148. http://dx.doi.org/10.1016/j.molp.2017.08.009
  24. 24. Zhao Q., Zhang Y., Wang G., Hill L., Weng J. K., Chen X. Y., Xue H., Martin C. A specialized flavone biosynthetic pathway has evolved in the medicinal plant, Scutellaria baicalensis // Sci. Adv. 2016. V. 2. P. e1501780. https://doi.org/10.1126/sciadv.1501780
  25. 25. Zhang Z., Lian X. Y., Li S., Stringer J. L. Characterization of chemical ingredients and anticonvulsant activity of American skullcap (Scutellaria lateriflora) // Phytomed. 2009. V. 16. P. 485–493. https://doi.org/10.1016/j.phymed.2008.07.011
QR
Translate

Индексирование

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library