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Проведен анализ двух линий паразитоида Habrobracon hebetor: зараженной эндосимбиотической 
бактерией Wolbachia и свободной от нее. Отмечены различия морфологических признаков линий, 
а именно степени меланизации кутикулы и размеров тела имаго паразитоида. Размеры как самцов, 
так и самок достоверно больше у линии, зараженной бактерией. Установлено, что Wolbachia влияет 
на уровень дофамина, тирозина, активность фенолоксидаз и количество пролина в гомогенате целого 
тела разных стадий развития паразитоида.
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Habrobracon hebetor (Say)  – широко распро-
страненный эктопаразитоид, используемый для 
биологического контроля численности насеко-
мых – вредителей сельского хозяйства, особен-
но Pyralidae и  Noctuidae (Rafiee-Dastjerdi et  al., 
2008; Исмаилов и др., 2020). Несмотря на то что 
H. hebetor широко используется для борьбы с вреди-
телями сельского хозяйства и массово культивиру-
ется в лабораторных условиях, многие аспекты его 
физиологии и иммунитета все еще слабо изучены. 
Подробно исследованы различные аспекты приме-
нения H. hebetor в биоконтроле, в том числе в со-
четании с инсектицидами и энтомопатогенными 
микроорганизмами (Saber, Abedi 2013; Sedaratian 
et  al., 2014; Исмаилов и  др., 2020). Работы, на-
правленные на изучение паразито-хозяинных от-
ношений, где H. hebetor выступает в роли хозяина, 
малочисленны.

В 2010 году у H. hebetor впервые было зафик-
сировано присутствие эндосимбионта Wolbachia 
(Kageyama et al., 2010). Основные исследования, 
направленные на изучение взаимодействий эн-
досимбионтов и паразитоидов, преимущественно 
посвящены изменениям в механизмах регуляции 
репродуктивного поведения и формированию такой 
репродуктивной аномалии, как цитоплазматиче-
ская несовместимость (Bagheri et al., 2019).

По разным оценкам, от 20 до 76% видов членисто-
ногих инфицировано Wolbachia (Hilgenboecker et al., 
2008; Weinert et al., 2015). Длительная коэволюция 
Wolbachia с беспозвоночными в качестве эндосим-
бионта привела к формированию ряда адаптаций, 
способствующих взаимовыгодному сосуществова-
нию хозяина и бактерии. Показано, что Wolbachia 
может влиять на продолжительность жизни, пло-
довитость, фертильность (Bi, Wang, 2020), а также 
способна изменять чувствительность хозяина к бак-
териям, вирусам, энтомопатогенным грибам, прото-
зойным инфекциям и инсектицидам (Moreira et al., 
2009; Landmann et al., 2010, 2012; Pietri et al., 2016; 
Zélé et al., 2020; Varotto-Boccazzi et al., 2020; Pimen-
tel et al., 2021; Zhang et al., 2021). В ряде исследова-
ний показано, что Wolbachia является активатором 
врожденного иммунитета путем регуляции таких 
механизмов иммунитета, как синтез активирован-
ных форм кислорода (АФК), антимикробных белков 
и пептидов, а также белков-активаторов аутофагии 
(Thomas et al., 2011; Pan et al., 2012; Rancès et al., 2012; 
Zug, Hammerstein, 2015; Leitner et al., 2022).

Одним из  важнейших механизмов иммунной 
системы насекомых, участвующем в защите от па-
тогенов, заживлении ран, формировании гранул 
и капсул, является фенолоксидазный каскад, при-
водящий к синтезу меланина (Lavine, Strand 2003; 
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Kanost, Gorman, 2008; Cerenius, Söderhäll, 2021). 
Фенолоксидазы (ФО) играют важную роль в про-
цессах линьки насекомых (Wang et al., 2013), про-
цессах распознавания свой–чужой, фагоцитозе, 
что делает их одним из ключевых звеньев иммун-
ной системы насекомых. В организме насекомых 
ФО находятся в виде неактивных проферментов, 
профенолоксидаз (проФО) и локализуются в кути-
куле, лимфе и гемоцитах, и только при наруше-
нии целостности покровов и/или проникнове-
нии инородных тел (вирусов, бактерий, грибов) 
происходит их  активация (Ashida, Brey, 1995; 
Kopacek et al., 1995; Sugumaran, 2002). Поскольку 
в процессе синтеза меланина образуются хиноно-
вые промежуточные соединения, токсичные как 
для хозяина, так и для паразита, активация ФО-
каскада строго регламентирована и локализована. 
ФО катализируют многие ступени каскада, вклю-
чая превращение тирозина в 3,4-дигидроксифе-
нилаланин (ДОФА), ДОФА в дофахром, которые 
затем могут быть использованы либо для мелани-
зации и/или склеротизации (Huang et al., 2005). 
Декарбоксилирование ДОФА с помощью ДОФА 
декарбоксилазы приводит образованию дофамина. 
Помимо участия в ФО-каскаде, дофамин явля-
ется важным звеном, задействованным во мно-
гих физиологических процессах, в том числе как 
нейромедиатор, нейромодулятор и нейрогормон 
(Gruntenko et al., 2017).

На фоне активного изучения влияния Wolbachia 
на уровень дофамина и, как следствие, на пове-
дение, качество сна, продолжительность жизни 
и т.д (Gruntenko et al., 2017) практически отсут-
ствуют исследования, изучающие роль дофами-
на в  иммунных реакциях при взаимодействии 
насекомых с  эндосимбионтами (или в  системе 
насекомое–эндосимбионт).

Существует множество исследований, связы-
вающих биохимические изменения у насекомых 
и феномен влияния Wolbachia на их устойчивость 
к вирусным и бактериальным инфекциям (Teix-
eira et al., 2008; Hedges et al., 2008; Ye et al., 2013; 
Gupta et al., 2017; Carrington et al., 2018). Однако 
молекулярные механизмы, лежащие в основе вза-
имодействия Wolbachia с хозяином, а также фи-
зиологические механизмы, с помощью которых 
Wolbachia способствует устойчивости хозяина, 
остаются в значительной степени неизвестными. 
Несмотря на очевидную связь, влияние Wolbachia 
на активность фенолоксидаз и уровень дофамина 
изучалось в достаточно немногочисленных, раз-
розненных работах. В частности, в работе Томаса 
с соавт. (Thomas et al., 2011) было показано влия-
ние Wolbachia на уровень дофамина и активность 
ФО  у Drosophila melanogaster, D. simulans и  Aedes 
aegypti. Следует отметить, что в данном исследо-
вании было показано, что разница в меланизации 
между инфицированными и неинфицированными 

насекомыми не  связана с  уровнями дофамина 
(Thomas et  al., 2011). В  работах, посвященных 
изучению влияния Wolbachia на  формирование 
устойчивости комаров Anopheles gambiae к маля-
рийному плазмодию, было показано, что бак-
терия блокирует развитие плазмодиев в клетках 
хозяина, активируя процессы меланизации и ин-
капсуляции (Kumar et al., 2003; Walker, Moreira, 
2011; Bian et al., 2013). Работ, демонстрирующих 
изменения в количестве дофамина у паразитоидов 
под влиянием эндосимбионта Wolbachia, в зависи-
мости от стадии развития хозяина, насколько нам 
известно, не проводилось.

В связи с тем, что Wolbachia не содержит пол-
ного набора метаболических путей, которыми об-
ладают свободноживущие бактерии, ее выжива-
ние полностью зависит от организма хозяина (Wu 
et al., 2004; Jiménez et al., 2019). В частности, Wol-
bachia может использовать только ограниченное 
количество субстратов и способна синтезировать 
лишь часть промежуточных продуктов метаболиз-
ма. Считающаяся аминокислотным гетеротрофом, 
Wolbachia получает большую часть своей энергии, 
импортируя аминокислоты, такие как пролин, не-
посредственно от хозяина (Evans et al., 2009). Про-
лин – важнейшая аминокислота, выполняющая 
важную роль в  процессах энергетического обе-
спечения полета и детоксикации аммиака у насе-
комых (Scaraffia, Wells, 2003; Scaraffia et al., 2005). 
Данная аминокислота имеет решающее значение 
для синтеза белка и роста клеток, в осморегуля-
ции, регуляции стабильности белков, участвует 
в клеточной биоэнергетике (Bursell, 1981; Kempf, 
Bremer, 1998; Kumar et al., 1998; Ignatova, Gierasch, 
2006; Wood, 2011; Moses et  al., 2012; Natarajan 
et al., 2012).

Цель нашего исследования состояла в  том, 
чтобы выявить взаимосвязь между наличием/
отсутствием эндосимбионта Wolbachia у эктопа-
разитоида H. hebetor и активностью фенолокси-
даз, содержанием дофамина, тирозина и пролина 
на разных стадиях развития паразитоида.

МАТЕРИАЛЫ И МЕТОДЫ

Насекомые

Исследования проводили на  разных стадиях 
развития двух линий H. hebetor (Biologishe Bera-
tung, Берлин, Германия), зараженных Wolbachia 
(w+) и свободных от Wolbachia (w-). В качестве на-
секомого-хозяина для H. hebetor использовали гу-
сениц вощинной огневки Galleria mellonella. Има-
го эктопаразитоида содержали при 28 °C и фото-
периоде 14/10 часов, на 12%-ном медовом сиропе 
(Kryukova et al., 2011). В качестве хозяина для ли-
чиночного поколения паразитоида использовали 
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личинок 4–5 возраста Galleria mellonella лабора-
торной линии ИСиЭЖ СО РАН. Линия, свобод-
ная от эндосимбиотической бактерии (w-), была 
получена при инъецировании хозяина (G. mel-
lonella) макроциклическим антибиотиком рифам-
пицин (RUPE Belmedpreparaty, Беларусь), обла-
дающим активностью против нескольких видов 
Mycobacterium (Sensi, 1983). Через три поколения 
была получена чистая линия, и далее паразитоида 
содержали на гусеницах без обработки антибио-
тиком. Чистоту линии проверяли каждые 6 месяцев. 
Наличие или отсутствие Wolbachia у паразитоида 
контролировали с помощью ПЦР-анализа гомоге-
натов взрослых особей (как самцов, так и самок). 
Линии культивировали в  лаборатории на  про-
тяжении четырех лет. Исследования проводили 
на  личинках пятого возраста, фаратных имаго 
и имаго H. hebetor.

Оценка окраски кутикулы  
имаго паразитоидов

Для оценки интенсивности окрашивания 
(меланизации) кутикулы линий w+ и w- H. hebe-
tor имаго самцов и самок прижизненно замора-
живали при -20°С на 24 часа. Затем их фотогра-
фировали с  дорсальной и  вентральной сторон 
тела с помощью цифрового фотоаппарата (Power 
Shot G9, Canon, Япония) под световым микро-
скопом (Carl Zeiss Surgical GmbH, Oberkochen, 
Германия). Наличие светлого пигмента в кути-
куле имаго анализировали с помощью програм-
мы Image J (Abramoff et al., 2004; Tomilova et al., 
2019). Программа Image J при оценке максималь-
но темного объекта представляет его в виде наи-
меньшего числового значения, соответственно 
чем светлее анализируемое изображение, тем 
большее число выдает программа при анализе. 
Оценивали интенсивность светлой окраски, ко-
торую выражали в условных единицах, представ-
ляющих собой значения серого, отражающего 
свет от анализируемого объекта. Из каждой по-
пуляции (w+ и w-) были взяты 50 самцов и самок. 
Анализ каждой особи производили индивидуаль-
но, выделяя для оценки контур тела от верхней 
части головной капсулы (не захватывая антенн) 
до конца брюшка (не затрагивая яйцеклад в слу-
чае анализа самок).

Оценка размеров тела  
имаго паразитоидов

Для оценки длины тела паразитоидов ли-
ний w+ и w- H. hebetor имаго самцов и самок при-
жизненно замораживали при –20°С на 24 часа. 
Затем их  фотографировали с  использовани-
ем светового микроскопа (Carl  Zeiss  Surgical 
GmbH, Oberkochen, Германия). Фото были 

проанализированы с использованием программ-
ного обеспечения AxioVision (v4.6.3.0). У каждой 
осы измеряли длину тела с вентральной стороны 
с точностью до 0.01 мм. Измерения включали дли-
ну тела от верхней части головной капсулы (не за-
хватывая антенн) до конца брюшка (не затрагивая 
яйцеклад в случае анализа самок). Из каждой по-
пуляции (w+ и w-) были взяты 50 самцов и самок.

Приготовление образцов для измерения ФО,  
дофамина и  тирозина

При подготовке образцов для измерения актив-
ности фермента объединяли по 5 особей (5 личинок 
5 возраста; 5 фаратных имаго; 5 имаго) H. hebetor 
из обеих линий (w+ и w-). Поскольку яд, содержа-
щийся в ядовитых железах самок, содержит серпи-
ны, ингибирующие профенолоксидазный каскад 
(Becchimanzi et al., 2020), активность ФО и количе-
ство дофамина, тирозина оценивали только в самцах 
(имаго, фаратные имаго). Пять особей H. hebetor по-
мещали в 100 мкл охлажденного (+4°C) 0.1 М фос-
фатного буфера (ФБ, pH 6.4), гомогенизировали 
в ультразвуковом гомогенизаторе (Bandelin Sono-
puls HD 2070 ultrasonic homogenizer, Bandelin Elec-
tronic, Germany), дважды центрифугировали (5500g, 
10 мин, 4°C). Супернатант использовали для опреде-
ления активности фенолоксидаз.

Для измерения дофамина и  тирозина 5 осо-
бей (5 личинок 5 возраста; 5 фаратных имаго; 
5 имаго) H. hebetor взвешивали, гомогенизирова-
ли в 200 мкл 0.2 N хлорной кислоты, содержащей 
в качестве внутреннего стандарта 2 мкг/мл 3,4-ди-
гидроксибензиламина гидробромида, перемешива-
ли 30 сек на мешалке Vortex для осаждения бел-
ка, затем центрифугировали 10 минут (20000g, 
4°C) и 50 мкл супернатанта переносили в виалы 
для анализа методом высокоэффективной жид-
костной хроматографии (ВЭЖХ). Для измерения 
дофамина и тирозина использовали 10 образцов 
(1 образец = 5 особей) каждого варианта.

Измерение фенолоксидазной активности

Активность фенолоксидаз (ФО) измеря-
ли по  методу (Hall et  al., 1995) с  модификация-
ми. Аликвоту супернатанта гомогената личинок/
имаго (10 мкл) добавляли к субстрату (200 mkl) – 
2  мМ  Допамин гидрохлорид (Sigma-Aldrich) 
в 0.1 M ФБ pH 6.4 и инкубировали 2 часа при 28°C. 
Оптическую плотность образующегося дофахро-
ма определяли на  планшетном спектрофотоме-
тре (Multiskan Ascept, Thermo) при длине волны 
475 нм. Активность фермента выражали в измене-
нии оптической плотности инкубационной смеси 
в ходе реакции за 1 мин и на 1 мг белка. Для из-
мерения ФО использовали 25 образцов (1 обра-
зец = 5 особей) каждого варианта.
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Анализ содержания дофамина и тирозина

Содержание дофамина и  тирозина определя-
ли методом ВЭЖХ, используя методику, описан-
ную в работе Лакшмана и Раджу (Lakshmana, Raju, 
1997), с модификациями. Анализ проводили с ис-
пользованием системы ВЭЖХ Agilent 1260 Infinity 
(Agilent Technologies, Сингапур) с диодно-матрич-
ным и флуоресцентным детекторами. Для обра-
ботки хроматограмм использовали программное 
обеспечение Agilent Chem Station B04.03. Выбор 
оптимальных длин волн возбуждения и эмиссии 
осуществляли путем сбора спектральных данных 
в  диапазонах 220–380 нм (возбуждение) и 300–
500  нм (эмиссия), используя стандарты (1 мкг/
мл в 0.2 N хлорной кислоте) L-ДОФА, дофамина, 
3,4-дигидроксибензиламина гидробромида (вну-
тренний стандарт), L-триптофана и L-тирозина. 
Пики идентифицировали по  временам удержи-
вания, УФ-спектрам и спектрам флуоресценции. 
Изократическое разделение проводили на обра-
щенно-фазовой колонке C18 (Zorbax-SB, внутрен-
ний диаметр 250 × 4,6 мм, размер частиц 5 мкм, 
Agilent, Калифорния, США) с  предколонкой 
(Zorbax-SB, 12,5 × 4,6 мм). Температура термостата 
колонки составляла 35°C. Подвижная фаза состоя-
ла из 13% смеси ацетонитрил/метанол (1:1 по объ-
ему) и 87% буфера (25 мМ дигидрофосфат калия, 
1.85 мМ  натриевой соли октан-1-сульфоновой 
кислоты в качестве ион-парного реагента, рН 3.0). 
Скорость потока составляла 1 мл/мин, объем вво-
димой пробы – 5 мкл. Детекцию проводили с по-
мощью диодно-матричного детектора (сбор спек-
тров UV-Vis от 190 до 500 нм), а также детектора 
флуоресценции, по двум каналам, настроенным 
следующим образом: канал 1 – возбуждение при 
279 нм  и эмиссия при 315 нм  для обнаружения 
L-ДОФА, L-тирозина, 3,4-дигидроксибензилами-
на гидробромида и дофамина; канал 2 – возбуж-
дение при 279 нм и эмиссия при 340 нм для обна-
ружения L-триптофана. Количественное опреде-
ление тирозина и дофамина в образцах проводили 
методом внутреннего стандарта по калибровочным 
кривым для каждого из веществ.

Измерение содержания пролина

Концентрацию пролина определяли методом 
Бейтса с соавт. (Bates et al., 1973) с использованием 
нингидринового реактива. Пять личинок гомоге-
низировали в 100 мкл 3%-ной сульфосалициловой 
кислоты с помощью ультразвукового гомогениза-
тора, гомогенат центрифугировали (20000 g, 5 мин) 
при комнатной температуре. Супернатант смешива-
ли с ледяной уксусной кислотой и нингидриновым 
реактивом в объемном соотношении 1:2:2 и нагре-
вали до 96°С в течение часа. Реакцию останавлива-
ли, помещая образец в лед. Оптическую плотность 

раствора нингидрин-пролина в  толуоле измеря-
ли при 520 нм на планшетном спектрофотометре 
(Multiskan Ascent, Thermo). Содержание пролина 
определяли по калибровочной кривой, используя 
раствор пролина в 3%-ной сульфосалициловой кис-
лоте. Для измерения пролина использовали 30 об-
разцов (1 образец = 5 особей) каждого варианта.

Количество белка

Содержание белка в образцах оценивали с по-
мощью метода Брэдфорда, используя бычий сыво-
роточный альбумин в качестве стандарта (Bradford, 
1976).

Статистический анализ данных

Данные представлены как медиана, квартиль-
ные отклонения 25–75%, а  также минимальные 
и  максимальные значения. Анализ данных был 
выполнен при помощи программ STATISTICA 8 
(StatSoft Inc., Tulsa, OK, USA) и PAST 4.03. Данные 
были проверены на наличие распределения Гаусса 
с помощью теста на нормальность Шапиро–Уилка. 
Данные были нормально распределены, поэтому 
мы использовали однофакторный параметрический 
дисперсионный анализ с попарным сравнением – 
критерий Стьюдента (Т-тест). Равенство диспер-
сий проверено с помощью теста Левене, в случае 
неравных дисперсий применен Т-критерий Уэлча. 
Различия между линиями эктопаразитоида считали 
значимыми, если p < 0.05.

РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

Оценка интенсивности меланизации кутикулы  
и размеров тела имаго паразитоида

Фенолоксидазы непосредственно участвуют 
в склеротизации и меланизации покровов насеко-
мых. Анализ степени меланизации показал достовер-
ные отличия: имаго H. hebetor линии w- имели более 
темную кутикулу, чем имаго w+, в кутикуле которых 
преобладал светлый пигмент (рис. 1а). Измерение 
размеров тела показало, что имаго линии w+ досто-
верно крупнее имаго линии w- (p ≤0.05) (рис. 1б).

Активность фенолоксидаз

Для определения влияния Wolbachia на актив-
ность фенолоксидаз использовали гомогенат це-
лого тела разных стадий развития H. hebetor. Было 
отмечено достоверное увеличение (0.043 ± 0.004) 
фенолоксидазной активности у личинок 5 возрас-
та линии, зараженной Wolbachia, по  сравнению 
с линией, свободной от эндосимбионта (p ≤ 0.005). 
У фаратных имаго и имаго линии w+ активность 
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фермента была в 1.5 раза выше, чем у насекомых 
линии w- (p ≤ 0.005; рис. 2).

Количество дофамина и тирозина

Для определения времени удерживания и кон-
центрации биогенных аминов – дофамина и ти-
розина нами была использована смесь стандартов 
биогенных аминов: L-3,4-дигидроксифенилаланин 
(DOPA), L-тирозин(TYR), p-октопамин (OA), вну-
тренний стандарт 3,4-дигидроксибензиламин (IS), 
дофамин (DA), p-тирамин(TA), серотонин (5-HT), 
L-триптофан(TRP) в концентрации 1 мкг/мл каж-
дого биогенного амина (рис. 3а). Содержание до-
фамина и  тирозина в  образцах имаго линий w– 
и w+ представлены в виде хроматограмм на рис. 3б, 
3в соответственно.

Уровень дофамина был достоверно выше 
в 1.6 раз у  личинок w+ по  сравнению с  лини-
ей w– (p ≤ 0.005). У фаратных имаго обеих линий 
не было достоверных отличий в содержании до-
фамина. У имаго линии w- содержание дофамина 
было достоверно выше в 4.8 раз в сравнении с w+ 

(p ≤ 0.005; рис. 4а). Содержание тирозина также 
было достоверно выше в 2.6 раза у личинок линии 
w- (p ≤ 0.005; рис. 4б). У фаратных имаго анализ 
содержания тирозина не выявил достоверных раз-
личий (рис. 4б). У имаго линии w- уровень тирози-
на был достоверно выше в 2.5 раза по сравнению 
с имаго линии w+ (p ≤  0.005; рис. 4б).
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Рис. 1. Морфологические признаки имаго Habrobracon hebetor: содержание светлого пигмента в кутикуле имаго Hab-
robracon hebetor двух линий, Wolbachia- и Wolbachia+ (а), размеры имаго самцов и самок линий Wolbachia- и Wolbachia+ 
(б). Результаты представлены как медиана, квартильные отклонения 25–75%, а также минимальные и максималь-
ные значения. Статистический анализ проводился между самцами и самками линий Wolbachia- и Wolbachia+ (Т-тест, 
N = 50, p ≤ 0.05); размеры тела имаго паразитоида (Т-тест, N = 50, p ≤ 0.05). Разные буквы показывают существен-
ные различия между однополыми имаго разных линий.
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Рис. 2. Изменение фенолоксидазной активности 
в гомогенатах целого тела разных стадий развития 
Habrobracon hebetor линий Wolbachia- и Wolbachia+. 
Результаты представлены как медиана, квартильные 
отклонения 25–75%, а также минимальные и макси-
мальные значения. Статистический анализ прово-
дился между особями одной стадии разных линий: 
Wolbachia- и Wolbachia+ (Т-критерий Уэлча, N = 25, 
p ≤ 0.005). Разные буквы показывают существенные 
различия между особями одной стадии развития раз-
ных линий.
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Содержание белка  
в гомогенатах целого тела

Анализ гомогенатов целого тела разных ста-
дий развития H. hebetor показал достоверное уве-
личение количества белка у линии w+ у личинок 
в 1.3 раза, у фаратных имаго – в 1.4 раза, у имаго – 
в 1.2 раза (рис. 5).

Содержание пролина  
в гомогенатах целого тела

Количество пролина в личинках линии w+ было 
достоверно выше в 1.5 раза, однако у  фаратных 
имаго и имаго достоверно больше пролина в 1.4 
и 1.7 раза соответственно было у линии w- (рис. 6).

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

На двух линиях паразитоида H. hebetor, зара-
женной эндосимбиотической бактерией Wolbachia 
и свободной от нее, были получены данные, сви-
детельствующие об активном влиянии Wolbachia 
на  уровень дофамина и  активность фенолокси-
даз на всех стадиях развития хозяина. Активность 
фенолоксидаз была достоверно выше у всех ста-
дий H. hebetor, зараженных Wolbachia, по сравне-
нию со свободными от эндосимбионта. Уровень 
дофамина был достоверно выше только у личи-
нок, зараженных Wolbachia, по сравнению со сво-
бодными от  нее. Однако у  имаго, свободных 
от  Wolbachia, уровень дофамина был достовер-
но выше по сравнению с зараженными особями. 
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При этом количество тирозина у личинок и имаго 
w- линии было достоверно больше. В то же время 
содержание пролина было выше в личинках w+ 

линии. Одними из основных морфологических от-
личий данных линий паразитоида являются окра-
ска и размеры тела. Так, насекомые, зараженные 
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Рис. 4. Содержание дофамина (а) и тирозина (б) в гомогенатах целого тела разных стадий развития Habrobracon he-
betor двух линий: зараженных Wolbachia (Wolbachia+) и не зараженных (Wolbachia-) Результаты представлены как ме-
диана, квартильные отклонения 25–75%, а также минимальные и максимальные значения. Статистический анализ 
проводился между особями одной стадии разных линий: Wolbachia- и Wolbachia+ (Т-тест, N = 10, p ≤ 0.05). Разные 
буквы показывают существенные различия между особями одной стадии развития разных линий.
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Рис. 6. Содержание пролина в гомогенате целого тела 
Habrobracon hebetor двух линий. Результаты представ-
лены как медиана, квартильные отклонения 25–75%, 
а  также минимальные и  максимальные значения. 
Статистический анализ проводился между особями 
одной стадии разных линий: Wolbachia- и Wolbachia+ 
(Т-тест, N = 30, p ≤0.05). Разные буквы показывают 
существенные различия между особями одной стадии 
развития разных линий.
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Рис. 5. Общее количество белка в гомогенате целого тела 
Habrobracon hebetor разных стадий развития двух линий 
Wolbachia- и Wolbachia+. Результаты представлены как 
медиана, квартильные отклонения 25–75%, а также ми-
нимальные и максимальные значения. Статистический 
анализ проводился между особями одной стадии разных 
линий: Wolbachia- и Wolbachia+ (Т-тест, N = 25, p ≤ 0.05). 
Разные буквы показывают существенные различия меж-
ду особями одной стадии развития разных линий.
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Wolbachia, светлее окрашены. Размер тела как сам-
цов, так и самок был достоверно больше у линии 
w+ по сравнению с w- линией.

Эндосимбионтная бактерия Wolbachia обладает 
широким спектром воздействий на своих хозяев, 
управляя репродуктивным поведением, продол-
жительностью жизни и устойчивостью к инфек-
циям (Werren et al., 2008). Известно, что фенолок-
сидазный каскад является ключевым механизмом 
иммунной системы насекомых, участвующим в за-
живлении ран, клеточной и гуморальной инкап-
суляции и  противовирусных реакциях (Theopold 
et al., 2004; Marieshwari et al., 2023). В организме на-
секомого фенолоксидазы (ФО) находятся в виде 
неактивных проферментов, профенолоксидаз 
(проФО) и в основном локализуются в кутикуле, 
лимфе и гемоцитах, и только при нарушении це-
лостности покровов и/или проникновении ино-
родного тела происходит их активация (Ashida, 
Brey, 1995; Kopacek et al., 1995; Sugumaran, 2002). 
ФО катализирует многие ступени каскада, вклю-
чая превращение тирозина в 3,4-дигидроксифе-
нилаланин (ДОФА), который затем может быть 
использован либо для меланизации, либо для 
склеротизации (Huang et al., 2005). Фенолокси-
дазы участвуют в  нескольких этапах образова-
ния меланина (Ashida, Brey, 1997), что основано 
на  широкой субстратной специфичности (Aso 
et al., 1985; Hall et al., 1995), и подразделяются на 
3 группы: (1) тирозиназоподобные фенолоксида-
зы, (2) фенолоксидаза типа катехолазы и (3) лак-
казоподобная фенолоксидаза (Marieshwari et al., 
2023). У насекомых процесс склеротизации про-
ходит с участием фенолоксидазы лакказного типа 
(лакказы). Окисление дофамина лакказой (лак-
казой 2) приводит к образованию дофаминхино-
на (Yang et al., 2022). На уровне дофаминхинона 
меланиновый путь раздваивается. В одном случае 
предпочтение отдается феомеланиновому пути 
и приводит к образованию феомеланина от жел-
того до коричневого цвета, в другом – эумелани-
новому пути, который приводит к формированию 
темно-коричнево-черного полимера эумеланина 
(Barek et al., 2018). Имаго исследуемых нами ли-
ний значительно отличались по окраске, и линия 
w+ была светлее, чем w-. Вероятно, активно влияя 
на ФО-каскад, вольбахия может частично «пере-
программировать» его, способствуя образованию 
феомеланина в  кутикуле имаго. Имаго линии, 
свободной от эндосимбионта, преимущественно 
обладали темноокрашенной кутикулой. Сопо-
ставимые результаты были получены на комарах 
Ae. aegypti, зараженных Wolbachia. Яйца, получен-
ные от контрольной линии комаров (свободные 
от Wolbachia), были темнее, чем у инфицирован-
ных Wolbachia особей (Thomas et al., 2011).

Нами получены данные, свидетельствующие 
об  активном влиянии Wolbachia на  активность 

фенолоксидаз на трех стадиях развития хозяина 
(личинка, фаратные имаго, имаго). Активность 
фенолоксидаз была достоверно выше у всех ста-
дий H. hebetor, зараженных Wolbachia, по сравне-
нию со свободными от эндосимбионта. Следует 
отметить, что тренд, при котором наивысшая ак-
тивность фермента характерна для личинок, со-
хранился независимо от наличия или отсутствия 
бактерии. Полученные нами данные частично со-
гласуются с работой Томаса с соавт., проведенной 
на Drosophila melanogaster, D. Simulans и Ae. aegypti, 
где было показано влияние Wolbachia на  актив-
ность фенолоксидаз в гемолимфе хозяина. У инфи-
цированных D. melanogaster, D. simulans и Ae. aegypti 
активность ФО была значительно выше (Thomas 
et al., 2011). Повышение уровня фенолоксидазной 
активности у инфицированных Wolbachia эктопа-
разитоидов может прямо или косвенно защищать 
их  от гибели, вызванной другими инфекциями. 
Тем самым эндосимбионт заботится об укрыва-
ющем его хозяине для сохранения собственного 
благополучия путем повышения его иммунного 
статуса.

Помимо влияния на окраску имаго, Wolbachia 
оказывает влияние и на размер H. hebetor. Имаго, 
зараженные эндосимбионтной бактерией, были 
достоверно больше особей, свободных от  нее. 
Полученные данные согласуются с ранее полу-
ченными Росса с соавт. результатами, где при срав-
нении длины крыльев комаров Aedes aegypti, зара-
женных Wolbachia, c незараженными особями было 
выявлено достоверное увеличение размеров кры-
льев зараженных особей комаров (Ross et al., 2014). 
Размер тела бобовых долгоносиков Callosobruchus 
chinensis, зараженных тремя штаммами Wolbachia, 
был больше, чем у свободных от эндосимбионта 
особей (Okayama et al., 2016). Было показано, что 
Wolbachia изменяет обмен липидов и сахаров, на-
капливая энергетический резерв, необходимый 
во  время метаморфоза хозяина (Kryukova et  al., 
2023; Karpova et al., 2023).

Одним из основных соединений, используе
мых насекомыми при склеротизации и окраске 
кутикулы, является дофамин. Помимо этого, 
он задействован во многих метаболических путях: 
действует как сигнальная молекула во многих фи-
зиологических процессах, в нейротрансмиссии, 
фагоцитозе, заживлении ран, иммунных реакциях 
насекомых (Fearon, 1997; Aderem, Underhill, 1999; 
Neckameyer, Leal, 2002; Ling, Yu, 2005; Marmaras, 
Lampropoulou, 2009; Tsakas, Marmaras 2010). Нами 
было обнаружено, что уровень дофамина у H. he-
betor был достоверно выше у личинок линии w+ 
по сравнению с w-. Личинки линии w+ активнее 
питаются и растут. У фаратных имаго достоверной 
разницы по содержанию дофамина между особя-
ми линий w+ и w- не было, в то же время у имаго 
w- уровень дофамина был достоверно выше, чем 
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у имаго w+. Исходя из полученных данных, мож-
но предположить, что дофамин, являясь не только 
субстратом для фенолоксидаз, но и нейромедиа-
тором и нейрогормоном, активно участвующим 
в  управлении поведением хозяина, его двига-
тельной активностью, снижается под действием 
Wolbachia. Снижение подвижности и  активно-
сти имаго линии w+ выгодно для сохранения ре-
сурсов для Wolbachia и ее дальнейшей передачи. 
По-видимому, Wolbachia регулирует содержание 
ДА  у  хозяина, встраиваясь в  пути его синтеза 
и деградации. Показано, что Wolbachia вызывает 
повышение уровня дофамина у хозяина (Moreira 
et al., 2011). В частности, у комаров A. aegypti, ин-
фицированных Wolbachia wMelPop, уровень до-
фамина был достоверно выше, чем у свободных 
от  эндосимбионта особей (Moreira et  al., 2011). 
Активация генов, ответственных за  синтез до-
фамина под влиянием Wolbachia, была показана 
в работах, выполненных на Drosophila (Gruntenko 
et al., 2017; Bi et al., 2018). Снижение уровня до-
фамина было показано у Drosophila только для па-
тогенного штамма wMelPop, (Voronin et al., 2009; 
Gruntenko et al., 2017).

При оценке содержания тирозина – предше-
ственника дофамина и молекулы, стоящей во гла-
ве ФО-каскада, было отмечено необычно низкое 
его количество у личинок и имаго, инфицирован-
ных Wolbachia, по сравнению с неинфицирован-
ной линией (рис. 4). Следует отметить, что тирозин 
также участвует в биосинтезе белков и меланинов; 
как предшественник вовлечен в синтез дофамина, 
октопамина и тирамина или может через путь де-
градации тирозина расщепляться пятью фермен-
тативными реакциями с образованием ацетоаце-
тата и фумарата, которые могут подвергаться даль-
нейшему катаболизму по циклу Кребса (Sterkel, 
Oliveira, 2017; Parkhitko et al., 2020). Известно, что 
Wolbachia может влиять на метаболические пути 
хозяина, чтобы получить питательные вещества 
и энергию для собственного выживания и размно-
жения (Yuan et al., 2015; Saucereau et al., 2017; Li et 
al., 2018). В частности, при исследовании протео-
ма двух линий (c Wolbachia и без) Nasonia vitripennis 
были получены достоверные отличия в их белко-
вом составе. Различия касались белков, участвую-
щих в росте и развитии хозяина, каталитической 
активности, метаболических процессах (Li et al., 
2018). В связи с тем, что особи линии w+ H. hebetor 
крупнее, можно предположить, что значительная 
часть тирозина используется на построение бел-
ка и энергообмен хозяина, в отличие от линии w-, 
особи которой меньшего размера. Данные по со-
держанию белка в гомогенатах имаго паразитои-
да косвенно подтверждают наши предположения. 
У имаго линии w+ содержание белка в гомогенатах 
было достоверно выше на всех стадиях развития 
паразитоида.

Кроме того, следует учитывать, что у Wolbachia 
синтез эндогенных аминокислот, в том числе про-
лина, чрезвычайно ограничен и для синтеза бел-
ка и производства энергии она импортирует ами-
нокислоты хозяина (Wu et al., 2004; Fenn, Blaxter, 
2006). Пролин участвует во множестве биологиче-
ских процессов, включая передачу сигналов клет-
ками, защиту от стресса и производство энергии. 
Свойства пролина как органического осмолита 
обеспечивают клеточную защиту от абиотического 
стресса (Klowden, 2013). Нами были получены дан-
ные по содержанию пролина в гомогенатах разных 
стадий развития двух линий H. hebetor. Личинки 
H. hebetor линии w+ содержали достоверно боль-
шее количество пролина в сравнении с линией w-. 
Однако достоверно большее содержание пролина 
в  фаратных имаго и  в имаго мы  регистрировали 
только для линии w-. Показано, что плотность воль-
бахии в тканях хозяина варьирует в зависимости 
от стадии развития (Ge et al., 2020; Ming et al., 2015). 
Мы предполагаем, что наибольшее количество про-
лина в  зараженных личинках линии w+ связано 
с усиленным накоплением энергетических запасов 
на наиболее интенсивно питающейся стадии раз-
вития паразитоида – личинке – для дальнейшего 
благополучного расходования источника энергии – 
пролина –на жизнедеятельность как паразитоида, 
так и эндосимбионта. Затем, по мере прохождения 
паразитоидом линии w+ следующих стадий разви-
тия, регистрируемое снижение количества пролина 
и у фаратных имаго и у имаго в сравнении с теми 
же стадиями линии w-, возможно, связано с актив-
ным расходованием энергии на нужды Wolbachia.

ЗАКЛЮЧЕНИЕ

Как любой эволюционно связанный с хозяином 
эндосимбионт, Wolbachia настолько тесно встрои-
лась в жизненный цикл последнего, что часто вы-
ступает в  двойной роли: помощника и  патогена 
одновременно. Контролируя процесс размножения 
хозяина, часто перекраивая структуру популяции 
выгодным для себя образом, бактерия может спо-
собствовать и выживанию хозяина, в частности, 
регулируя его метаболизм и поведение. Несмотря 
на широкий охват по диагностике вольбахии в раз-
личных беспозвоночных, и насекомых в том числе, 
тонкие механизмы взаимодействия между эндо-
симбионтом и хозяином изучены на ограниченном 
числе видов. Важность этих работ неоспорима, од-
нако малоизученным остается влияние Wolbachia 
на иммунные реакции хозяина. Дальнейшее изу-
чение влияния Wolbachia на ключевые механизмы 
иммунитета насекомых, в  частности на  проФО 
каскад, поможет внести ясность в  особенности 
тонких механизмов взаимодействия данной бакте-
рии со своим хозяином.
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Effect of Wolbachia on morphology and several aspects  
of host immunity of Habrobracon hebetor (SAY)

E. A. Chertkova1, #, A. A. Alekseev1, 2, A. P. Lobanova1, K. A. Zolotareva1, N. A. Kryukova1

1Institute of Systematics and Ecology of Animals SB RAS, Novosibirsk, 11 Frunze St., Novosibirsk, 630091 Russia
2Voevodsky Institute of Chemical Kinetics and Combustion, SB RAS, 3 Institutskaya str., Novosibirsk, 630090 Russia

#e-mail: chertkaterina@yandex.ru

Two lines of  the parasitoid Habrobracon hebetor were analysed: one infected with the Wolbachia 
endosymbiotic bacterium and the other free of it. Differences in morphological characters were observed 
between the lines, specifically in the degree of cuticle melanisation and body size of adult parasitoids. The 
sizes of both male and female parasitoids were significantly larger in the line infected with the bacterium. 
The research found that Wolbachia affects the levels of dopamine, tyrosine, and phenoloxidase activity, 
as well as the amount of proline in the whole body homogenate during different stages of parasitoid 
development.

Keywords: ectoparasitoid, Wolbachia, phenoloxidases.
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