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На примере Scorpaena porcus (Linnaeus, 1758) предложена методика оценки метгемоглобинредук-
тазной активности ядерных эритроцитов костистых рыб. В условиях эксперимента in vitro эритро-
цитарную взвесь данного вида взвешивали в растворах с различной концентрацией NaNO2, после 
отмывки от данного соединения изучали процесс восстановления метгемоглобина (MetHb) на про-
тяжении 150 мин. О функциональном состоянии гемоглобина судили по результатам спектрально-
го анализа. Изучение кинетики восстановления MetHb показало, что зависимость хорошо описы-
валась уравнением экспоненциальной функции при коэффициенте детерминации (R2) более 0.9. 
Характер зависимости сохранялся при различных уровнях окислительной нагрузки. Это позволи-
ло рассчитать константу скорости первого порядка k (25 оС). У данного вида она составила 5.75–
6.45 (10–3) мин–1. Установлено, что MetHb-редуктазная активность ядерных эритроцитов морского 
ерша повышалась при увеличении окислительной нагрузки. При концентрации NaNO2 6.0 mM она 
составляла 1.73 ± 0.21 µM MetHb мин-1 г-1 Hb.
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Процесс деоксигенации оксигемоглобина в нор-
ме сопровождается диссоциацией комплекса HbO2 
с отрывом кислорода и сохранением железа в геме 
в  двухвалентном состоянии (ферро-состояние) 
(Schechter, 2008):

(Fe2+ )HbO2  → (Fe2+)Hb + O2.

Однако в ряде случаев этот процесс приводит 
к окислению железа (ферри-состояние) и образо-
ванию супероксиданионрадикала (∙О2

–) (Schech-
ter, 2008):

(Fe2+)HbO2  → (Fe3+)Hb + ∙О2
–.

Образующееся соединение получило название 
метгемоглобина (MetHb), оно не способно связы-
вать кислород. Эритроциты высших позвоночных 

содержат NADH2-зависимую MetHb-редуктазу 
(цитохром b5-редуктаза, КФ 1.6.2.2), которая пре-
пятствует переходу гемоглобина в ферри-состояние. 
Она сопрягает NADH с цитохромом b5, что не до-
пускает превышения уровня MetHb в крови более 
1% (Schechter, 2008):

NADH + cytb5(Fe3+) → cytb5(Fe2+) + MetHb(Fe3+) →

→ cytb5(Fe3+) + Hb(Fe2+).

Ядерные эритроциты рыб также содержат дан-
ный молекулярный комплекс. Сравнительная 
оценка показала, что у рыб этот процесс протека-
ет более эффективно, чем у высших позвоночных 
(Jensen, Nielsen, 2018). Вместе с тем считается, что 
респираторные пигменты рыб отличаются низ-
кой устойчивостью к окислению (Sajiki et al., 1991; 
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Powell, Perry, 1997; Maestre et al., 2009; Blair et al., 
2020). Уровень MetHb в крови ряда видов может 
достигать 27% (Graham, Fletcher, 1986; Soldatov, 
2023) без видимой окислительной нагрузки. При-
чины этого явления до конца не понятны.

Следует обратить внимание на тот факт, что 
NADH-MetHb-редуктаза в ядерных эритроцитах 
локализуется в  цитоплазматической мембране, 
в отличие от высших позвоночных, у которых она 
находится в  цитозоле (Saleh, McConkey, 2012). 
Недавно в экспериментах in vitro показана также 
способность MetHb связывать H2S (Jensen, Fago, 
2020). Это особенно актуально для донных ви-
дов, сталкивающихся с присутствием H2S в при-
донных слоях воды, то есть наличие в крови рыб 
повышенных концентраций MetHb может быть 
функционально обусловлено, а не является след-
ствием низкой стойкости к процессу окисления. 
Известно, что окисленные формы гемоглобина 
легко встраивают в мембранные структуры эри-
троцита (Sztiller et al., 2006; Welbourn et al., 2017). 
Считается, что в  незначительных количествах 
они способствуют стабилизации клеточного ци-
тоскелета (Welbourn et al., 2017).

В настоящей работе в условиях in vitro исследу-
ется метгемоглобинредуктазная активность в ядер-
ных эритроцитах морского ерша (Scorpaena porcus, 
Linnaeus, 1758), обитающего в придонных слоях 
воды, в крови которого отмечаются повышенные 
концентрации MetHb.

МАТЕРИАЛЫ И МЕТОДЫ

Использовали взрослых особей морского ерша 
(Scorpaena porcus, Linnaeus, 1758) обоих полов 
(длина тела – 12–14 см, вес – 90–114 г) в состо-
янии относительного функционального покоя 
(стадия зрелости гонад II–III). Рыбу перевозили 
в аквариальную в пластиковых баках емкостью 
60 л с воздушной аэрацией. После транспорти-
ровки животных рассаживали в аквариумы, име-
ющие естественный проток и освещение, и вы-
держивали в данных условиях в течение 5–7 су-
ток. В работе использовали подвижных, активно 
питающихся особей. Контроль за температурой 
и концентрацией кислорода в воде осуществляли 
при помощи кислородомера ST300D RU (Ohaus, 
США). Перед отбором проб крови, чтобы ис-
ключить развитие состояния манипуляционного 
стресса, в воде аквариума в качестве анестетика 
растворяли уретан. Эффективные концентрации 
его для морского ерша были определены ранее 
(Soldatov, 2005).

Отбор проб и  пробоподготовка. Кровь получа-
ли пункцией хвостовой артерии. В качестве анти-
коагулянта применяли гепарин (“Рихтер”, Вен-
грия). Предварительно определяли концентрацию 

гемоглобина в  крови при помощи гемиглобин-
цианидного метода и  гематокритную величину. 
Для  этих целей использовали набор реактивов 
(“Агат”, Россия) и микроцентрифугу МЦГ-8 (Рос-
сия). Плазму отделяли путем центрифугирования: 
рефрижераторная центрифуга Eppendorf Centrifuge 
5424 R  при 845 g. Эритроцитарную массу триж-
ды отмывали от  плазмы в  среде: 128 mM  NaCl, 
3  mМ  KC1, 1.5 mМ  CaCl2, 1.5  mМ  MgCl2, 
15 mМ трис, 2.2 mМ D-глюкозы (рН 7.8) (Tiihonen, 
Nikinmaa, 1991), при 845 g в течение 5 мин. Ее ис-
пользовали при проведении экспериментов in vitro.

Экспериментальные схемы. Отмытую эритро-
цитарную массу взвешивали в среде (Tiihonen, 
Nikinmaa, 1991). При смешивании соблюдали 
соотношение, совпадающее с  гематокритной 
величиной. 40 мкл взвеси вносили в 2.4 мл фос-
фатного буфера (0.02 mМ, рН 7.3), что приводи-
ло к лизису клеток. Строму осаждали при 9400 g 
в течение 2 минут. Для надосадочной жидкости 
прописывали спектры.

Оставшуюся клеточную массу предваритель-
но инкубировали в течение 30 мин в среде (Tiiho-
nen, Nikinmaa, 1991), содержащей NaNO2: 1.5 mM, 
3.0  mM  и 6.0 mM. Затем готовили гемолизаты, 
как описано выше, и прописывали спектры.

После инкубации с NaNO2 клетки дважды от-
мывали в среде (Tiihonen, Nikinmaa, 1991) и на-
блюдали на  протяжении 150 мин за  процессом 
восстановления концентрации MetHb. Спектры 
прописывали каждые 30 мин.

Все процедуры выполнялись при температуре 
25оС. В работе применяли термошейкер MTC-100 
(MIULAB, Chine).

Спектральный анализ гемолизатов. Спектры 
с полученных гемолизатов снимали при помощи 
двухлучевого спектрофотометра СПЕКС ССП-715 
(ЗАО “Спектроскопические системы”, Россия). 
Расчет содержания OxyHb, DeoxyHb и MetHb про-
водили по уравнениям (Benesch et al., 1973), рас-
считанным для рН 7.3:

[OxyHb] = (1.013 A576 – 0.3269 A630 – 0.7353 A560)∙10–4;

[DeoxyHb] = (1.373 A560 – 0.747 A576 – 0.737 A630)∙10–4;

[MetHb] = (2.985 A630 + 0.194 A576 – 0.4023 A560) 10–4.

Результаты выражали в µМ.
Статистический анализ. Статистические срав-

нения выполнены на основе непараметрического 
U-критерия Манна–Уитни. Графически цифровой 
материал обработан с использованием стандарт-
ного пакета Grapher (версия 11). Результаты пред-
ставлены как М ± m. Минимальный уровень зна-
чимости составлял р < 0.05. В работе использовано 
15 особей морского ерша. Обработано 58 образцов 
гемолизатов.
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РЕЗУЛЬТАТЫ ИССЛЕДОВАНИЯ

На рис. 1 представлены образцы спектров гемо-
глобина до внесения NaNO2, сразу после внесения 
данного соединения и  спустя 150 мин после от-
мывки клеточной массы от NaNO2. Следует обра-
тить внимание на величину экстинкции при 630 нм 
(максимум поглощения MetHb). У исходных об-
разцов она практически не была выражена. Сразу 
после внесения NaNO2 она существенно возрас-
тала и была пропорциональна величине нагрузки. 
Максимум отмечали при 6.0 mM NaNO2 – 0.11–
0.12 единиц. Спустя 150 мин после отмывки эри-
троцитарной массы от NaNO2 величина экстинкции 
существенно понижалась.

Расчеты показали, что у эритроцитарных взве-
сей, не  подверженных окислительной нагрузке, 

концентрация MetHb находилась на низком уровне 
0.40 ± 0.18 µM (1.38 ± 0.68%) (табл. 1). Преинкуба-
ция в среде, содержащей нитрит, сопровождалась 
пропорциональным ростом уровня MetHb на фоне 
понижения концентрации фракций OxyHb и De-
oxyHb. После отмывки от NaNO2 и наблюдения 
за состоянием эритроцитарной взвеси на протяже-
нии 150 минут процессы происходили в обратном 
порядке: концентрация MetHb снижалась, а OxyHb 
и DeoxyHb росла.

Характер понижения уровня MetHb показан 
на  рис. 2. Кинетика процесса хорошо описыва-
лась уравнением экспоненциальной функции при 
коэффициенте детерминации (R2) более 0.9, что 
характерно для реакций ферментативного ката-
лиза (рис. 2). На рис. 3 обобщены результаты из-
учения влияния дозированной окислительной 

Рис. 1. Спектральные характеристики гемолизатов морского ерша в норме и в условиях окислительной нагрузки 
(а – при 1.5 mM NaNO2; б – при 3.0 mM NaNO2; в – при 6.0 mM NaNO2; зеленый спектр – до внесения NaNO2; 
красный спектр – сразу после внесения NaNO2; синий спектр – спустя 150 мин после отмывки от NaNO2)

Таблица 1. Функциональное состояние гемоглобина морского ерша в условиях окислительной нагрузки

NaNO2, mM 
Фракции гемоглобина

OxyHb DeoxyHb MetHb
µM % µM % µM %

0 35.99 ± 3.72 90.54 ± 0.61 2.94 ± 0.35 7.23 ± 0.30 0.40 ± 0.18 1.38 ± 0.68
Сразу после внесения NaNO2

1.5 28.00 ± 1.71 65.48 ± 1.49 2.40 ± 0.19 5.55 ± 0.25 12.5 ± 1.2 29.0 ± 1.6
3.0 18.24 ± 1.41 49.94 ± 1.99 1.69 ± 0.14 4.49 ± 0.14 17.0 ± 1.5 45.6 ± 1.8
6.0 12.10 ± 1.20 31.90 ± 3.16 1.43 ± 0.20 3.53 ± 0.38 25.5 ± 2.7 64.6 ± 3.0

150 мин после отмывки от NaNO2
1.5 33.28 ± 1.98 80.25 ± 1.65 2.95 ± 0.20 7.15 ± 0.32 5.38 ± 1.03 12.6 ± 1.8
3.0 22.88 ± 1.29 71.98 ± 2.00 1.87 ± 0.21 5.72 ± 0.45 7.00 ± 0.92 22.0 ± 1.8
6.0 21.14 ± 2.68 63.28 ± 2.12 1.90 ± 0.36 5.34 ± 0.52 10.7 ± 1.7 31.4 ± 2.1

Примечание: OxyHb – оксигемоглобин; DeoxyHb – дезоксигемоглобин; MetHb – метгемоглобин



ИЗВЕСТИЯ РАН, СЕРИЯ БИОЛОГИЧЕСКАЯ № 1 2025

	 МЕТГЕМОГЛОБИНРЕДУКТАЗНАЯ АКТИВНОСТЬ ЯДЕРНЫХ ЭРИТРОЦИТОВ � 19

нагрузки на эритроцитарные взвеси. Как видно, 
характер зависимости сохранялся. Это позволило 
рассчитать константу скорости первого порядка k 
(25 оС) для трех представленных выше зависимо-
стей (рис. 3). Результаты представлены на рис. 4. 
Полученные значения оказались близкими, имею-
щиеся различия не были статистически значимы-
ми (p>0.05).

Оценку MetHb-редуктазной активности про-
водили с  учетом концентрации гемоглобина 
в крови рыб. Результаты выражали в µM MetHb 
мин–1 г–1 Hb (рис. 5). Как видно, активность за-
висела от величины предшествующей окислитель-
ной нагрузки. При 1.5 mM NaNO2 значения были 
минимальны: 0.84 ± 0.10 µM MetHb мин–1 г–1 Hb, 
а  при 6.0  mM  NaNO2 достигали максимальных 
значений 1.73 ± 0.21 µM MetHb мин–1 г–1 Hb.

ОБСУЖДЕНИЕ РЕЗУЛЬТАТОВ

Предложенная в настоящей работе процедура 
определения метгемоглобинредуктазной активности 
в ядерных эритроцитах морского ерша во многом 

близка к методике, рассмотренной в работе (Jensen, 
Nielsen, 2018), в которой использовался NaNO2 для 
перевода гемоглобина в ферри-форму. Отличие со-
стояло в том, что отмывку эритроцитарной массы 
проводили в среде (Tiihonen, Nikinmaa, 1991), со-
став которой отличался от предложенного в работе 
(Jensen, Nielsen, 2018). К отличиям следует отнести 
также применение фосфатного буфера (0.02 mМ, 
рН 7.3) для лизиса эритроцитарной массы с после-
дующим спектральным анализом лизатов, что по-
зволяло определить в них долю OxyHb, DeoxyHb 
и MetHb. Несмотря на различия в методиках, полу-
ченные результаты во многом оказались близкими.

Кинетика восстановления MetHb, независимо 
от уровня окислительной нагрузки, также описы-
валась константой скорости первого порядка (k). 
При 25°C ее значения составляли 5.75–6.45 (10–3) 
мин–1, что сопоставимо с данными, полученными 
для форели (Oncorhynchus mykiss), карпа (Cyprinus 
carpio) (Jensen, Nielsen, 2018), рыбы-клоуна-ножа 
(Chitala ornata) (Gam et al., 2017). Считается, что 
эффективность NADH2-MetHb-редуктазы у рыб 
существенно выше, чем у млекопитающих (Jensen, 
Nielsen, 2018). В нашем случае различия не были 
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Рис. 2. Пример кинетической кривой восстановления MetHb после устранения окислительной нагрузки (NaNO2) 
(а – обычная шкала, б – логарифмическая шкала)
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столь значительны. Они лишь немного превышали 
величины, зарегистрированные для овец и челове-
ка: 0,00552 и 0,00427 мин-1 соответственно (39°C и 
37°C) (Power et al., 2007).

Мнение о том, что наиболее высокие значения 
константы скорости первого порядка (k) отмечают-
ся у видов, толерантных к условиям внешней гипок-
сии (Gam et al., 2017; Jensen, Nielsen, 2018), в нашем 
случае также не находит окончательного подтверж-
дения. Полученные значения k для морского ерша 
были выше, чем у форели, но ниже, чем у карпа (Jen-
sen, Nielsen, 2018). Вместе с тем морской ерш счи-
тается одним из наиболее устойчивых к дефициту 
кислорода видов в черноморском регионе. Для него 
зарегистрированы наиболее низкие значения кри-
тических и  пороговых концентраций кислорода 
(Andreyeva et al., 2017). Скорее при оценке вели-
чины k следует учитывать уровень окислительной 
нагрузки, с которой сталкивается вид в среде оби-
тания. Как отмечалось, MetHb способен нейтрали-
зовать H2S (Jensen, Fago, 2020). Для донных видов, 
к которым относится и морской ерш, это весьма 
актуально. Поэтому поддержание повышенных 
концентраций MetHb в крови данного вида ока-
зывается функционально целесообразно, а  это 
возможно только на фоне пониженной активно-
сти NADH2-MetHb-редуктазы, что, по-видимому, 
и имеет место.

При оценке метгемоглобинредуктазной активно-
сти эритроцитов следует обращать внимание на не-
сколько составляющих. Безусловно, решающий 

вклад в  процесс восстановления MetHb вносит 
NADH-MetHb-редуктаза, которая передает элек-
трон на цитохром b5 (уравнение показано выше). 
При этом определенный вклад может вносить 
и NADPH-MetHb-редуктаза (Mansouri, Lurie, 1993). 
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Однако эффективность этого фермента долж-
на быть более низкой, так как ресурс клеточного 
NADPH в большей степени сопряжен с глутатио-
новой системой. В восстановлении MetHb может 
принимать участие и антиоксидантный фермент-
ный комплекс ядерного эритроцита. Известно, что 
активность ряда ферментов (пероксидазы, супе-
роксиддисмутазы) и концентрация восстановите-
лей (GSH) в клетках красной крови рыб превышает 
таковую у человека (Woo et al., 2006).

В настоящей работе предпринята попытка оце-
нить эффективность системы восстановления 
MetHb в зависимости от величины окислительной 
нагрузки. Расчет активности привязан к концен-
трации гемоглобина в крови (µM MetHb мин–1 г–1 

Hb). Из полученных результатов следует, что ак-
тивность системы существенно возрастала по мере 
увеличения окислительной нагрузки. Причину 
этого, по-видимому, следует связывать с  долей 
OxyHb в клеточных взвесях. При 6.0 mM NaNO2 
она была минимальна. Известно, что скорость 
восстановления MetHb значительно увеличива-
ется при дезоксигенации гемоглобина (Gladwin, 
Kim-Shapiro, 2008). Можно допустить, что переход 

клетки на  анаэробный метаболизм делает более 
доступным NADH для NADH-MetHb-редуктазы, 
что повышает активность системы восстановления 
MetHb эритроцита в целом.

ЗАКЛЮЧЕНИЕ

Рассмотренная в  настоящей работе методика 
оценки MetHb-редуктазной активности ядерных 
эритроцитов позволила установить кинетические ха-
рактеристики данной реакции. Показано, что зависи-
мость хорошо описывалась уравнением экспоненци-
альной функции при коэффициенте детерминации 
(R2) более 0.9. Характер зависимости сохранялся при 
различных уровнях окислительной нагрузки. Это 
позволило рассчитать константу скорости первого 
порядка k (25 оС). У морского ерша она составила 
5.75–6.45 (10–3) мин–1, что несколько превышает 
известные значения для млекопитающих, и было 
близко к данным, полученным для других видов ко-
стистых рыб. Установлено, что MetHb-редуктазная 
активность ядерных эритроцитов морского ерша по-
вышалась при росте окислительной нагрузки. Допу-
скается, что это связано с процессом деоксигенации 
гемоглобина, что облегчает процесс восстановления 
ферри-формы.
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Methemoglobin reductase activity of nuclear erythrocytes of the sea ruff  
(Scorpaena porcus, Linnaeus, 1758) under normal  

and oxidative stress conditions (In vitro experiments)

A. A. Soldatov1, 2, #, N. T. Shalagina1, V. N. Rychkova1, T. A. Kukhareva1

1Federal Research Center “A.O. Kovalevsky Institute of Biology of the South Seas of the Russian Academy of Sciences”,  
Nakhimov av., 2, Sevastopol, 299011 Russia

2Sevastopol State University, Universitetskaya str., 33, Sevastopol, 299053 Russia
#E-mail: alekssoldatov@yandex.ru

A method for evaluating the methemoglobin reductase activity of  nuclear erythrocytes of  teleost 
fish is proposed. The work was performed on a bottom marine species (Scorpaena porcus, Linnaeus, 
1758). In an in vitro experiment, the erythrocyte suspension of this type was weighed in solutions with 
different concentrations of NaNO2, after washing from this compound, the process of methemoglobin 
(MetHb) reduction was studied for 150 min. The functional state of hemoglobin was judged by the results 
of spectral analysis. The study of the kinetics of MetHb reduction showed that the dependence was well 
described by the equation of an exponential function with a coefficient of determination (R2) greater than 
0.9. The nature of the dependence remained at different levels of oxidative stress. This made it possible 
to calculate the velocity constant of the first order k (25 oC). In this species, it was 5.75–6.45 (10–3) 
min–1, which slightly exceeded the known values for mammals, and was close to the data obtained for 
other species of bony fish. It was found that the MetHb-reductase activity of the nuclear erythrocytes 
of the sea ruff increased with a rise in the oxidative load. At a concentration of 6.0 mM NaNO2, it was 
1.73 ± 0.21 µM MetHb min–1 g–1 Hb. It is assumed that this is due to the process of deoxygenation 
of hemoglobin.

Keywords: methemoglobin, oxidative load, MetHb-reductase activity, nuclear erythrocytes, Scorpaena porcus
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